Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 234: 113705, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194837

RESUMO

Hollow-core microstructured optical waveguides (HC-MOW) have recently emerged in sensing technologies, including the gas and liquid detection for industrial as well as clinical applications. Antiresonant HC-MOW provide capabilities for applications in refractive index (RI) sensing, while the long optical path for analyte-light interaction in HC-MOW leads to increased sensitivity of sensor based on Raman scattering signal measurements. In this study, we developed a two-in-one sensor device using HC-MOW for RI and Raman scattering detection. The performance of the sensor was evaluated by characterizing protein-copolymer multicomponent colloids, specifically, bovine serum albumin (BSA) and poly(N - vinyl-2 -pyrrolidone-co-acrylic acid) P(VP-AA) nano-sized complexes and microbubbles of the corresponding shell. Monocomponent solutions showed linear dependencies of RI and characteristic Raman peak intensities on mass concentration. Multicomponent Raman sensing of BSA@P(VP-AA) complexes and microbubbles revealed that changes in P(VP-AA) characteristic peak intensities can describe interactions between components needed to produce colloid systems. RI sensing of multicomponent colloids demonstrated linear dependence on total mass concentrations for BSA@P(VP-AA) complexes, while corresponding BSA@P(VP-AA) microbubbles can be detected with concentrations as high as 4.0 × 108 MB/mL. Therefore, the developed two-in-one sensor of RI and Raman scattering can be used the robust characterization of albumin-based colloids designed for therapeutic and diagnostic needs.


Assuntos
Refratometria , Análise Espectral Raman , Coloides
2.
J Extracell Vesicles ; 11(8): e12256, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35942823

RESUMO

We developed a novel asymmetric depth filtration (DF) approach to isolate extracellular vesicles (EVs) from biological fluids that outperforms ultracentrifugation and size-exclusion chromatography in purity and yield of isolated EVs. By these metrics, a single-step DF matches or exceeds the performance of multistep protocols with dedicated purification procedures in the isolation of plasma EVs. We demonstrate the selective transit and capture of biological nanoparticles in asymmetric pores by size and elasticity, low surface binding to the filtration medium, and the ability to cleanse EVs held by the filter before their recovery with the reversed flow all contribute to the achieved purity and yield of preparations. We further demonstrate the method's versatility by applying it to isolate EVs from different biofluids (plasma, urine, and cell culture growth medium). The DF workflow is simple, fast, and inexpensive. Only standard laboratory equipment is required for its implementation, making DF suitable for low-resource and point-of-use locations. The method may be used for EV isolation from small biological samples in diagnostic and treatment guidance applications. It can also be scaled up to harvest therapeutic EVs from large volumes of cell culture medium.


Assuntos
Vesículas Extracelulares , Cromatografia em Gel , Vesículas Extracelulares/metabolismo , Filtração , Plasma , Ultracentrifugação/métodos
3.
Phys Chem Chem Phys ; 24(15): 8901-8912, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35363241

RESUMO

Siliceous diatom frustules represent an up-and-coming platform for a range of bio-assisted nanofabrication processes able to overcome the complexity and high cost of current engineering technology solutions in terms of negligibly small power consumption and environmentally friendly processing combined with unique highly porous structures and properties. Herein, the modification of diatomite - a soft, loose, and fine-grained siliceous sedimentary rock composed of the remains of fossilized diatoms - with gold nanoparticles using layer-by-layer technology in combination with a freezing-induced loading approach is demonstrated. The obtained composite structures are characterized by dynamic light scattering, extinction spectroscopy, scanning (SEM) and transmission electron microscopy (TEM), and photoacoustic imaging techniques, and tested as a platform for surface-enhanced Raman scattering (SERS) using Rhodamine 6G. SEM, TEM, and energy dispersive X-ray spectroscopy (EDX) confirmed a dense coating of gold nanoparticles with an average size of 19 nm on the surface of the diatomite and within the pores. The photoacoustic signal excited at a wavelength of 532 nm increases with increasing loading cycles of up to three polyelectrolyte-gold nanoparticle bilayers. The hybrid materials based on diatomite modified with gold nanoparticles can be used as SERS substrates, but also as biosensors, catalysts, and platforms for advanced bioimaging.


Assuntos
Diatomáceas , Nanopartículas Metálicas , Terra de Diatomáceas , Diatomáceas/química , Congelamento , Ouro/química , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos
4.
Polymers (Basel) ; 13(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572666

RESUMO

The aim of the study was to explore the polyethylene glycol-dextran two-phase polymer system formed in human plasma to isolate the exosome-enriched fraction of plasma extracellular nanovesicles (ENVs). Systematic analysis was performed to determine the optimal combination of the polymer mixture parameters (molecular mass and concentration) that resulted in phase separation. The separated phases were analyzed by nanoparticle tracking analysis and Raman spectroscopy. The isolated vesicles were characterized by atomic force microscopy and dot blotting. In conclusion, the protein and microRNA contents of the isolated ENVs were assayed by flow cytometry and by reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR), respectively. The presented results revealed the applicability of a new method for plasma ENV isolation and further analysis with a diagnostic purpose.

5.
Biosensors (Basel) ; 12(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35049647

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is a powerful technique for biosensing. However, SERS analysis has several concerns: the signal is limited by a number of molecules and the area of the plasmonic substrate in the laser hotspot, and quantitative analysis in a low-volume droplet is confusing due to the change of concentration during quick drying. The usage of hollow-core microstructured optical fibers (HC-MOFs) is thought to be an effective way to improve SERS sensitivity and limit of detection through the effective irradiation of a small sample volume filling the fiber capillaries. In this paper, we used layer-by-layer assembly as a simple method for the functionalization of fiber capillaries by gold nanoparticles (seeds) with a mean diameter of 8 nm followed by UV-induced chloroauric acid reduction. We also demonstrated a simple and quick technique used for the analysis of the SERS platform formation at every stage through the detection of spectral shifts in the optical transmission of HC-MOFs. The enhancement of the Raman signal of a model analyte Rhodamine 6G was obtained using such type of SERS platform. Thus, a combination of nanostructured gold coating as a SERS-active surface and a hollow-core fiber as a microfluidic channel and a waveguide is perspective for point-of-care medical diagnosis based on liquid biopsy and exhaled air analysis.


Assuntos
Ouro , Nanopartículas Metálicas , Microfluídica , Fibras Ópticas , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...